77 research outputs found

    Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    Get PDF
    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs. Thus, individuals with D4 receptor polymorphisms might show enhanced reinforcing responses to MP and AMPH and attenuated locomotor response to AMPH.Fil: Thanos, P. K.. NIAAA Intramural Program; Estados Unidos. Brookhaven National Laboratory; Estados Unidos. Universidad de Buenos Aires; ArgentinaFil: Bermeo, C.. Brookhaven National Laboratory; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Suchland, K. L.. Oregon Health & Science University; Estados UnidosFil: Wang, G. J.. Brookhaven National Laboratory; Estados UnidosFil: Grandy, David K.. Oregon Health & Science University; Estados UnidosFil: Volkow, N. D.. NIAAA Intramural Program; Estados Unido

    A survey on wireless ad hoc networks

    Get PDF
    A wireless ad hoc network is a collection of wireless nodes that can dynamically self-organize into an arbitrary and temporary topology to form a network without necessarily using any pre-existing infrastructure. These characteristics make ad hoc networks well suited for military activities, emergency operations, and disaster recoveries. Nevertheless, as electronic devices are getting smaller, cheaper, and more powerful, the mobile market is rapidly growing and, as a consequence, the need of seamlessly internetworking people and devices becomes mandatory. New wireless technologies enable easy deployment of commercial applications for ad hoc networks. The design of an ad hoc network has to take into account several interesting and difficult problems due to noisy, limited-range, and insecure wireless transmissions added to mobility and energy constraints. This paper presents an overview of issues related to medium access control (MAC), routing, and transport in wireless ad hoc networks and techniques proposed to improve the performance of protocols. Research activities and problems requiring further work are also presented. Finally, the paper presents a project concerning an ad hoc network to easily deploy Internet services on low-income habitations fostering digital inclusion8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    Behavioral and neuroanatomical consequences of cell-type specific loss of dopamine D2 receptors in the mouse cerebral cortex

    Get PDF
    Developmental dysregulation of dopamine D2 receptors (D2Rs) alters neuronal migration, differentiation, and behavior and contributes to the psychopathology of neurological and psychiatric disorders. The current study is aimed at identifying how cell-specific loss of D2Rs in the cerebral cortex may impact neurobehavioral and cellular development, in order to better understand the roles of this receptor in cortical circuit formation and brain disorders. We deleted D2R from developing cortical GABAergic interneurons (Nkx2.1-Cre) or from developing telencephalic glutamatergic neurons (Emx1-Cre). Conditional knockouts (cKO) from both lines, Drd2fl/fl, Nkx2.1-Cre+ (referred to as GABA-D2R-cKO mice) or Drd2fl/fl, Emx1-Cre+ (referred to as Glu-D2R-cKO mice), exhibited no differences in simple tests of anxiety-related or depression-related behaviors, or spatial or nonspatial working memory. Both GABA-D2R-cKO and Glu-D2R-cKO mice also had normal basal locomotor activity, but GABA-D2R-cKO mice expressed blunted locomotor responses to the psychotomimetic drug MK-801. GABA-D2R-cKO mice exhibited improved motor coordination on a rotarod whereas Glu-D2R-cKO mice were normal. GABA-D2R-cKO mice also exhibited spatial learning deficits without changes in reversal learning on a Barnes maze. At the cellular level, we observed an increase in PV+ cells in the frontal cortex of GABA-D2R-cKO mice and no noticeable changes in Glu-D2R-cKO mice. These data point toward unique and distinct roles for D2Rs within excitatory and inhibitory neurons in the regulation of behavior and interneuron development, and suggest that location-biased D2R pharmacology may be clinically advantageous to achieve higher efficacy and help avoid unwanted effects.Fil: Lee, Gloria S.. Florida State University; Estados UnidosFil: Graham, Devon L.. Florida State University; Estados UnidosFil: Noble, Brenda L.. Florida State University; Estados UnidosFil: Trammell, Taylor S.. Florida State University; Estados UnidosFil: McCarthy, Deirdre M.. Florida State University; Estados UnidosFil: Anderson, Lisa R.. Florida State University; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Bhide, Pradeep G.. Florida State University; Estados UnidosFil: Stanwood, Gregg D.. Florida State University; Estados Unido

    A survey on wireless ad hoc networks

    Get PDF
    A wireless ad hoc network is a collection of wireless nodes that can dynamically self-organize into an arbitrary and temporary topology to form a network without necessarily using any pre-existing infrastructure. These characteristics make ad hoc networks well suited for military activities, emergency operations, and disaster recoveries. Nevertheless, as electronic devices are getting smaller, cheaper, and more powerful, the mobile market is rapidly growing and, as a consequence, the need of seamlessly internetworking people and devices becomes mandatory. New wireless technologies enable easy deployment of commercial applications for ad hoc networks. The design of an ad hoc network has to take into account several interesting and difficult problems due to noisy, limited-range, and insecure wireless transmissions added to mobility and energy constraints. This paper presents an overview of issues related to medium access control (MAC), routing, and transport in wireless ad hoc networks and techniques proposed to improve the performance of protocols. Research activities and problems requiring further work are also presented. Finally, the paper presents a project concerning an ad hoc network to easily deploy Internet services on low-income habitations fostering digital inclusion8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    DRD4 genotype predicts longevity in mouse and human

    Get PDF
    Longevity is influenced by genetic and environmental factors. The brain's dopamine system may be particularly relevant, since it modulates traits (e.g., sensitivity to reward, incentive motivation, sustained effort) that impact behavioral responses to the environment. In particular, the dopamine D4 receptor (DRD4) has been shown to moderate the impact of environments on behavior and health. We tested the hypothesis that the DRD4 gene influences longevity and that its impact is mediated through environmental effects. Surviving participants of a 30-year-old population-based health survey (N = 310; age range, 90-109 years; the 90+ Study) were genotyped/resequenced at the DRD4 gene and compared with a European ancestry-matched younger population (N = 2902; age range, 7-45 years). We found that the oldest-old population had a 66% increase in individuals carrying the DRD4 7R allele relative to the younger sample (p = 3.5 × 10(-9)), and that this genotype was strongly correlated with increased levels of physical activity. Consistent with these results, DRD4 knock-out mice, when compared with wild-type and heterozygous mice, displayed a 7-9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment. These results support the hypothesis that DRD4 gene variants contribute to longevity in humans and in mice, and suggest that this effect is mediated by shaping behavioral responses to the environment.Fil: Grady, Deborah L.. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Thanos, Panayotis K.. National Institute on Alcohol Abuse and Alcoholism. Laboratory of Neuroimaging; Estados Unidos. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados Unidos. Stony Brook University. Department of Psychology; Estados UnidosFil: Corrada, Maria M.. University of California. Department of Neurology; Estados UnidosFil: Barnett Jr., Jeffrey C.. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Ciobanu, Valentina. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Shustarovich, Diana. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Napoli, Anthony. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Moyzis, Alexandra G.. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Grandy, David. Oregon Health Sciences University. Physiology and Pharmacology; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular; ArgentinaFil: Wang, Gene-Jack. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Kawas, Claudia H.. University of California. Department of Neurology; Estados UnidosFil: Chen, Chuansheng. University of California. Department of Psychology and Social Behavior; Estados UnidosFil: Dong, Qi. Beijing Normal University. National Key Laboratory of Cognitive Neuroscience and Learning; ChinaFil: Wang, Eric. University of California. College of Medicine. Department of Biological Chemistry; Estados Unidos. Aria Diagnostics Inc.; Estados Unidos. University of California. Institute of Genomics and Bioinformatics; Estados UnidosFil: Volkow, Nora D.. National Institute on Alcohol Abuse and Alcoholism. Laboratory of Neuroimaging; Estados Unidos. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados Unidos. National Institute on Drug Abuse; Estados UnidosFil: Moyzis, Robert K.. University of California. College of Medicine. Department of Biological Chemistry; Estados Unidos. Beijing Normal University. National Key Laboratory of Cognitive Neuroscience and Learning; China. University of California. Institute of Genomics and Bioinformatics; Estados Unido

    Lorcaserin improves glycemic control via a melanocortin neurocircuit.

    Get PDF
    OBJECTIVE: The increasing prevalence of type 2 diabetes (T2D) and associated morbidity and mortality emphasizes the need for a more complete understanding of the mechanisms mediating glucose homeostasis to accelerate the identification of new medications. Recent reports indicate that the obesity medication lorcaserin, a 5-hydroxytryptamine (5-HT, serotonin) 2C receptor (5-HT2CR) agonist, improves glycemic control in association with weight loss in obese patients with T2D. Here we evaluate whether lorcaserin has an effect on glycemia without body weight loss and how this effect is achieved. METHODS: Murine models of common and genetic T2D were utilized to probe the direct effect of lorcaserin on glycemic control. RESULTS: Lorcaserin dose-dependently improves glycemic control in mouse models of T2D in the absence of reductions in food intake or body weight. Examining the mechanism of this effect, we reveal a necessary and sufficient neurochemical mediator of lorcaserin's glucoregulatory effects, brain pro-opiomelanocortin (POMC) peptides. To clarify further lorcaserin's therapeutic brain circuit, we examined the receptor target of POMC peptides. We demonstrate that lorcaserin requires functional melanocortin4 receptors on cholinergic preganglionic neurons (MC4RChAT) to exert its effects on glucose homeostasis. In contrast, MC4RChAT signaling did not impact lorcaserin's effects on feeding, indicating a divergence in the neurocircuitry underpinning lorcaserin's therapeutic glycemic and anorectic effects. Hyperinsulinemic-euglycemic clamp studies reveal that lorcaserin reduces hepatic glucose production, increases glucose disposal and improves insulin sensitivity. CONCLUSIONS: These data suggest that lorcaserin's action within the brain represents a mechanistically novel treatment for T2D: findings of significance to a prevalent global disease

    Leptin Activates Anorexigenic POMC Neurons through a Neural Network in the Arcuate Nucleus

    Get PDF
    The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus7 are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (g-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamu

    Sex difference in physical activity, energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons.

    Get PDF
    OBJECTIVE: Obesity is one of the primary healthcare challenges of the 21st century. Signals relaying information regarding energy needs are integrated within the brain to influence body weight. Central among these integration nodes are the brain pro-opiomelanocortin (POMC) peptides, perturbations of which disrupt energy balance and promote severe obesity. However, POMC neurons are neurochemically diverse and the crucial source of POMC peptides that regulate energy homeostasis and body weight remains to be fully clarified. METHODS: Given that a 5-hydroxytryptamine 2c receptor (5-HT2CR) agonist is a current obesity medication and 5-HT2CR agonist's effects on appetite are primarily mediated via POMC neurons, we hypothesized that a critical source of POMC regulating food intake and body weight is specifically synthesized in cells containing 5-HT2CRs. To exclusively manipulate Pomc synthesis only within 5-HT2CR containing cells, we generated a novel 5-HT 2C R (CRE) mouse line and intercrossed it with Cre recombinase-dependent and hypothalamic specific reactivatable Pomc (NEO) mice to restrict Pomc synthesis to the subset of hypothalamic cells containing 5-HT2CRs. This provided a means to clarify the specific contribution of a defined subgroup of POMC peptides in energy balance and body weight. RESULTS: Here we transform genetically programed obese and hyperinsulinemic male mice lacking hypothalamic Pomc with increased appetite, reduced physical activity and compromised brown adipose tissue (BAT) into lean, healthy mice via targeted restoration of Pomc function only within 5-HT2CR expressing cells. Remarkably, the same metabolic transformation does not occur in females, who despite corrected feeding behavior and normalized insulin levels remain physically inactive, have lower energy expenditure, compromised BAT and develop obesity. CONCLUSIONS: These data provide support for the functional heterogeneity of hypothalamic POMC neurons, revealing that Pomc expression within 5-HT2CR expressing neurons is sufficient to regulate energy intake and insulin sensitivity in male and female mice. However, an unexpected sex difference in the function of this subset of POMC neurons was identified with regard to energy expenditure. We reveal that a large sex difference in physical activity, energy expenditure and the development of obesity is driven by this subpopulation, which constitutes approximately 40% of all POMC neurons in the hypothalamic arcuate nucleus. This may have broad implications for strategies utilized to combat obesity, which at present largely ignore the sex of the obese individual

    Prospective Latin American cohort evaluating outcomes of patients with COVID-19 and abnormal liver tests on admission

    Get PDF
    Introduction & objectives: The independent effect of liver biochemistries as a prognostic factor in patients with COVID-19 has not been completely addressed. We aimed to evaluate the prognostic value of abnormal liver tests on admission of hospitalized patients with COVID-19. Materials & methods: We performed a prospective cohort study including 1611 hospitalized patients with confirmed SARS-CoV-2 infection from April 15, 2020 through July 31, 2020 in 38 different Hospitals from 11 Latin American countries. We registered clinical and laboratory parameters, including liver function tests, on admission and during hospitalization. All patients were followed until discharge or death. We fit multivariable logistic regression models, further post-estimation effect through margins and inverse probability weighting. Results: Overall, 57.8% of the patients were male with a mean age of 52.3 years, 8.5% had chronic liver disease and 3.4% had cirrhosis. Abnormal liver tests on admission were present on 45.2% (CI 42.7–47.7) of the cohort (n = 726). Overall, 15.1% (CI 13.4–16.9) of patients died (n = 244). Patients with abnormal liver tests on admission presented higher mortality 18.7% (CI 15.9–21.7), compared to those with normal liver biochemistries 12.2% (CI 10.1–14.6); P 30. Conclusions: The presence of abnormal liver tests on admission is independently associated with mortality and severe COVID-19 in hospitalized patients with COVID-19 infection and may be used as surrogate marker of inflammation.Fil: Mendizabal, Manuel. Universidad Austral. Hospital Universitario Austral; ArgentinaFil: Piñero, Federico. Universidad Austral. Hospital Universitario Austral; ArgentinaFil: Ridruejo, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Anders, Margarita. Hospital Aleman; ArgentinaFil: Silveyra, María Dolores. Sanatorio Anchorena; ArgentinaFil: Torre, Aldo. Centro Médico ABC; MéxicoFil: Montes, Pedro. Hospital Nacional Daniel A. Carrión; PerúFil: Urzúa, Alvaro. Hospital Clínico de la Universidad de Chile; ChileFil: Pages, Josefina. Universidad Austral. Hospital Universitario Austral; ArgentinaFil: Toro, Luis G.. Hospitales de San Vicente Fundación de Medellín y Rionegro; ColombiaFil: Díaz, Javier. Hospital Nacional Edgardo Rebagliati Martins; PerúFil: Gonzalez Ballerga, Esteban. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Miranda Zazueta, Godolfino. Instituto Nacional de Ciencias Médicas y Nutrición; MéxicoFil: Peralta, Mirta. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Gutiérrez, Isabel. Centro Médico ABC; MéxicoFil: Michelato, Douglas. Hospital Especializado en Enfermedades Infecciosas Instituto Couto Maia; BrasilFil: Venturelli, Maria Grazia. Hospital Nacional Guillermo Almenara Irigoyen; PerúFil: Varón, Adriana. Fundación Cardio-Infantil; ColombiaFil: Vera Pozo, Emilia. Hospital Regional Dr. Teodoro Maldonado Carbo; EcuadorFil: Tagle, Martín. Clínica Anglo-Americana; PerúFil: García, Matías. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; ArgentinaFil: Tassara, Alfredo. Hospital Aleman; ArgentinaFil: Brutti, Julia. Sanatorio Anchorena; ArgentinaFil: Ruiz García, Sandro. Hospital de Víctor Lazarte Echegaray; PerúFil: Bustios, Carla. Clínica Delgado; PerúFil: Escajadillo, Nataly. Hospital Nacional Almanzor Aguinaga Asenjo; PerúFil: Macias, Yuridia. No especifíca;Fil: Higuera de la Tijera, Fátima. Hospital General de México “Dr. Eduardo Liceaga"; MéxicoFil: Gómez, Andrés J.. Hospital Universitario Fundación Santa Fé de Bogotá; ColombiaFil: Dominguez, Alejandra. Hospital Padre Hurtado; ChileFil: Castillo Barradas, Mauricio. Hospital de Especialidades del Centro Médico Nacional La Raza; MéxicoFil: Contreras, Fernando. No especifíca;Fil: Scarpin, Aldana. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"; ArgentinaFil: Schinoni, Maria Isabel. Hospital Alianza; BrasilFil: Toledo, Claudio. Universidad Austral de Chile; ChileFil: Girala, Marcos. Universidad Nacional de Asunción; ParaguayFil: Mainardi, Victoria. Hospital Central De las Fuerzas Armadas; UruguayFil: Sanchez, Abel. Hospital Roosevelt; GuatemalaFil: Bessone, Fernando. Provincia de Santa Fe. Ministerio de Salud y Medio Ambiente - Rosario. Hospital Provincial del Centenario; ArgentinaFil: Rubinstein, Fernando Adrian. Instituto de Efectividad Clínica y Sanitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Silva, Marcelo Oscar. Universidad Austral. Hospital Universitario Austral; Argentin
    • …
    corecore